LASER DIODE SOURCE – FIBER OPTIC
(SINGLE OR MULTI-WAVELENGTH)

Features:
• Single or multi-wavelength sources available
• Continuous wave (CW) and waveform modulation
• Wide range of connector receptacles available
• Optional output power adjustment
• Polarization-maintaining, singlemode, or multimode versions available
• Low battery indicator
• Rugged and compact design
• Low cost
• User selectable auto turn off mode

Applications:
• Insertion loss measurement and attenuation measurement
• Fiber identification using internal modulated mode
• Splicing and connectorization testing
• End-to-end short link testing
• FTTX/PON
• Quality Assurance

Product Description:
OZ Optics produces Fiber Optic Laser Diode Sources in a variety of wavelengths. The receptacle-style sources are offered with a wide range of receptacles, while the pigtail-style sources offer the choice of polarization maintaining, singlemode, or multimode fiber output. Each source has a low battery indicator on the front panel.

In general, OZ Optics uses polarization maintaining fibers based on the PANDA fiber structure when building polarization maintaining components and patchcords. However OZ Optics can construct devices using other PM fiber structures. We do carry some alternative fiber types in stock, so please contact our sales department for availability. If necessary, we are willing to use customer supplied fibers to build devices.

The standard source provides continuous waveform output. It can also be pulse modulated internally at 270 Hz, 1 kHz and 2 kHz. The FOSS-2N allows the user to select one of four preset power levels via the keypad.

OZ Optics recommends angled connectors for improved stability. For 1300 nm and 1550 nm wavelengths, an isolator can be added for improved stability. OZ Optics also manufactures the Highly Stable Laser Diode Source (HIFOSS), which includes a temperature controller and an isolator. See the Highly Stable Laser Diode Source data sheet for more information on this product.
Ordering Information for Standard Parts:

<table>
<thead>
<tr>
<th>Bar Code</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>37517</td>
<td>FOSS-21-3A-4/125-635-S-1</td>
<td>Single Wavelength Fiber Optic Laser Diode Source with 635 nm wavelength, 0.8 to 1 mW output, for 4/125 µm core/cladding SM fiber with angle FC/APC receptacle. Unit has a built in display and is operated with 2 AA batteries or an optional 5 V AC/DC adapter.</td>
</tr>
<tr>
<td>36708</td>
<td>FOSS-21-3S-4/125-635-S-1</td>
<td>Single Wavelength Fiber Optic Laser Diode Source with 635 nm wavelength, 0.8 to 1 mW output, for 4/125 µm core/cladding single mode fiber with super FC/PC receptacle. Unit has a built in display and is operated with 2 AA batteries or an optional 5 V AC/DC adapter.</td>
</tr>
<tr>
<td>45427</td>
<td>FOSS-21-3S-4/125-635-P-P</td>
<td>Single wavelength fiber optic laser diode source with 635 nm wavelength, 0.8 to 1 mW output from a 4/125 µm core/cladding PM fiber with a super FC/PC receptacle. With built-in display and powered with 2 AA batteries.</td>
</tr>
<tr>
<td>42128</td>
<td>FOSS-21-3S-4/125-650-S-1</td>
<td>Single Wavelength Fiber Optic Laser Diode Source with 650 nm wavelength, 0.8 to 1 mW output, for 4/125 µm core/cladding single mode fiber with super FC/PC receptacle. Unit has a built in display and is operated with 2 AA batteries or an optional 5 V AC/DC adapter.</td>
</tr>
<tr>
<td>38659</td>
<td>FOSS-21-3A-5/125-780-S-1</td>
<td>Single Wavelength Fiber Optic Laser Diode Source with 780 nm wavelength, 0.8 to 1 mW output, for 5/125 µm core/cladding single mode fiber with angle FC/APC receptacle. Unit has a built in display and is operated with 2 AA batteries or an optional 5 V AC/DC adapter.</td>
</tr>
<tr>
<td>37377</td>
<td>FOSS-21-3S-5/125-810-S-1</td>
<td>Single Wavelength Fiber Optic Laser Diode Source with 810 nm±/-10 nm wavelength, 0.8 to 1 mW output, for 5/125 µm core/cladding single mode fiber with super FC/PC receptacle. Uses 2 AA batteries or optional AC adapter.</td>
</tr>
<tr>
<td>42757</td>
<td>FOSS-21-3S-9/125-1310-S-1</td>
<td>Single Wavelength Fiber Optic Laser Diode Source with 1310 nm wavelength, 0.8 to 1 mW output , for 9/125 µm core/cladding single mode fiber with super FC/PC receptacle. Unit has a built in display and is operated with 2 AA batteries or an optional 5 V AC/DC adapter.</td>
</tr>
<tr>
<td>44915</td>
<td>FOSS-21-3S-9/125-1490-S-1</td>
<td>Single wavelength fiber optic laser diode source for 1490 nm wavelength, with 0.8 to 1 mW output power, for 9/125 µm core/cladding single mode fibers with super FC/PC receptacles. Uses 2 AA batteries or optional AC adapter.</td>
</tr>
<tr>
<td>24032</td>
<td>FOSS-21-3S-9/125-1550-S-1</td>
<td>Single Wavelength Fiber Optic Laser Diode Source with 1550 nm wavelength, 0.8 to 1 mW output, for 9/125 µm core/cladding single mode fiber with super FC/PC receptacle. Unit has a built in display and is operated with 2 AA batteries or an optional 5 V AC/DC adapter.</td>
</tr>
<tr>
<td>45740</td>
<td>FOSS-21-3A-9/125-1550-S-1</td>
<td>Fiber optic laser diode source, 1550 nm wavelength, 0.8 to 1 mW output, for 9/125 µm core/cladding single mode fiber with an angle FC/APC receptacle. Unit has a built in display and is operated with 2 AA batteries or an optional 5 V AC/DC adapter.</td>
</tr>
<tr>
<td>49595</td>
<td>FOSS-21-3S-9/125-1625-S-1</td>
<td>Single wavelength fiber optic laser diode source for 1625±/-20 nm wavelength, with 0.8 to 1 mW output power, for 9/125 µm core/cladding single mode fibers with super FC/PC receptacles. Uses 2 AA batteries or optional AC adapter.</td>
</tr>
<tr>
<td>27834</td>
<td>AC-SVDC-MULTI-PLUG-Z</td>
<td>Power supply, 15 Watts, 5 VDC output, 3 A, with power cord and multi-plugs for different countries. Output is 2.1 mm center positive pin power plug.</td>
</tr>
</tbody>
</table>

Standard Product Specifications:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available wavelengths1</td>
<td>For single wavelength - without isolator 635, 655, 670, 685, 780, 810, 830, 850, 980, 1310, 1490, 1550, 1625 nm</td>
</tr>
<tr>
<td></td>
<td>For single wavelength - with isolator 1310, 1550 nm</td>
</tr>
<tr>
<td></td>
<td>For dual-wavelength - without isolator 1310, 1490, 1550, 1625 nm</td>
</tr>
<tr>
<td>Wavelength accuracy2</td>
<td>± 5 nm for 635 to 685 nm; ± 15 nm for 780 to 980 nm; ± 20 nm for 1310 to 1625 nm</td>
</tr>
<tr>
<td>Linewidth2,3</td>
<td>1.5 nm (Typical for 1550 nm)</td>
</tr>
<tr>
<td>Available receptacles</td>
<td>Standard, SC, AT&T-ST, LC, MU, 2.5 mm ID Universal, and 1.25 mm ID Universal</td>
</tr>
<tr>
<td>Optical power4</td>
<td>0.8 to 1 mW (Standard, depending on wavelength and laser class)</td>
</tr>
<tr>
<td>Optical power stability5</td>
<td>Without isolator ± 0.05 dB (Typical)</td>
</tr>
<tr>
<td></td>
<td>With isolator ± 0.025 dB (Typical)</td>
</tr>
<tr>
<td>Internal modulation</td>
<td>CW, 270 Hz, 1 kHz and 2 kHz square wave</td>
</tr>
<tr>
<td>Power supply</td>
<td>Two AA alkaline batteries. Optional universal 110/220 V AC/DC adapter7</td>
</tr>
<tr>
<td>**Dimensions (W x L x H)**6</td>
<td>76 x 127 x 25.4 mm (3 x 5 x 1 in)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>Operating -10 to +50 °C</td>
</tr>
<tr>
<td></td>
<td>Storage -20 to +60 °C</td>
</tr>
<tr>
<td>Weight (including batteries)</td>
<td>225 g (0.5 lb.)</td>
</tr>
</tbody>
</table>

Laser classification based on IEC 60825-1: Class 1 or Class 2

Note:
1. Typical wavelengths shown. For other wavelengths, please contact OZ Optics.
2. Depends on laser diode specification.
3. For narrow linewidth, please contact OZ Optics.
4. Higher power is available upon request with multimode fiber only. Please contact OZ Optics.
5. Over 6 hours, at 23 °C, after 30 minutes warm up, tested at 1550 nm with super FC/PC receptacle, 9/125 singlemode fiber.
6. Dimensions and weight may change for special order. Does not include pouch and connectors.
Ordering Examples for Standard Parts:
1. A customer needs a 1550 nm laser diode source, with 1 mW output power, 9/125 µm core/cladding singlemode fiber with a super FC/PC receptacle. He wants an AC adaptor for North America as well.

<table>
<thead>
<tr>
<th>Bar Code</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24032</td>
<td>FOSS-21-3S-9/125-1550-S-1</td>
<td>Single Wavelength Fiber Optic Laser Diode Source with 1550 nm wavelength, 0.8 to 1 mW output, for 9/125 µm core/cladding single mode fiber with super FC/PC receptacle. Unit has a built-in display and can be operated with 2 AA batteries or an optional 5 V AC/DC adapter.</td>
</tr>
<tr>
<td>27834</td>
<td>AC-5VDC-MULTI-PLUG-Z</td>
<td>Power supply, 15 Watts, 5 VDC output, 3 A, with power cord and multi-plugs for different countries. Output is 2.1 mm center positive pin power plug.</td>
</tr>
</tbody>
</table>

2. A customer wants a dual 1310/1550 nm laser diode sources, with 1 mW output power, with FC/APC receptacle.

<table>
<thead>
<tr>
<th>Bar Code</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>43661</td>
<td>FOSS-22-3A-9/125-1310/1550-S-1</td>
<td>Dual Wavelength Fiber Optic Laser Diode Source with 1310 nm and 1550 nm wavelengths, 0.8 mW to 1 mW output, for 9/125 µm core/cladding single mode fiber with angle FC/APC receptacle. Uses 2 AA batteries or optional AC adapter.</td>
</tr>
</tbody>
</table>

Ordering Information for Custom Parts:
OZ Optics welcomes the opportunity to provide custom designed products to meet your application needs. As with most manufacturers, customized products do take additional effort so please expect some differences in the pricing compared to our standard parts list. In particular, we will need additional time to prepare a comprehensive quotation, and lead times will be longer than normal. In most cases non-recurring engineering (NRE) charges, lot charges, and a minimum order will be necessary. These points will be carefully explained in your quotation, so your decision will be as well informed as possible. We strongly recommend buying our standard products.

Questionnaire for Custom Parts:
1. What is the wavelength required for the laser diode source?
2. What is the required maximum output power of the laser diode source?
3. What type of fiber are you using? (SMF, MMF or PMF)
4. What model source do you need? If Receptacle style, what type? If Pigtail style, what is the fiber length, Jacket OD and connector type?

Description

Single/Multimode Wavelength Receptacle Style Laser Diode Source

N = Number of channels:
1 = Single Wavelength Source
2 = Dual Wavelength Source

X = Connector type:
3S = Standard, Super, or Ultra NTT-FC/PC
3A = Angled NTT-FC/PC
SC = SC
SCA = Angled SC
8 = AT&T-ST
LC = LC
MU = MU
1.25 U = Universal receptacle for 1.25 mm OD ferrule (LC, MU, etc.)
2.5 U = Universal receptacle for 2.5 mm OD ferrule (FC, ST, SC, etc.)

a/b = Fiber core/cladding in µm:
9/125 for 1300/1500 nm singlemode fiber.
8/125 for 1550 nm PANDA style PM fiber.
7/125 for 1300 nm PANDA style PM fiber
(See tables 1 to 5 in the Standard Tables data sheet for other values)
Ordering Examples for Custom Parts:

A customer needs a 1550 nm laser diode source, with 1mW output power and isolator, for 9/125 µm core/cladding single mode fiber with super FC/PC receptacle.

<table>
<thead>
<tr>
<th>Bar Code</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>55148</td>
<td>FOSS-21-3S-9/125-1550-S-1-ISOL</td>
<td>Single Wavelength Fiber Optic Laser Diode Source with 1550 nm wavelength, 0.8 to 1 mW output, for 9/125 µm core/cladding single mode fiber with super FC/PC receptacle with built in isolator. Unit has a built in display and is operated with 2 AA batteries or an optional 5 V AC/DC adapter.</td>
</tr>
</tbody>
</table>

Ordering Examples for Custom Parts:

A customer needs to verify the integrity of an optical network using 9/125 SM fiber at 1310, and 1550 nm. The network uses FC/APC connectors. The customer would like to carry out the tests using 0.2 mW sources. He can do this by ordering the following part:

<table>
<thead>
<tr>
<th>Bar Code</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24643</td>
<td>FOSS-22-3A-9/125-1310/1550-S-0.2</td>
<td>Dual Wavelength Fiber Optic Laser Diode Source with 1310 and 1550 nm wavelengths, 0.2 mW output, for 9/125 um core/clading single mode fiber with angled FC/PC receptacle. Uses 2 AA batteries or optional AC adapter.</td>
</tr>
</tbody>
</table>

Frequently Asked Questions (FAQs):

Q: What’s the maximum output power of the FOSS?
A: Maximum output power is 1 mW for the standard FOSS depending on the wavelength and laser classification. Powers up to 2 mW can be built on special request, depending on customer requirements. For output power higher than 2 mW, a Highly Stable Laser Diode Source should be ordered. Contact OZ Optics for details.

Q: Why is a modulated signal desirable?
A: By modulating a light signal, it is easy for detection circuitry to detect the signal even in the presence of high background signals or noise.

Q: Can a polarization-maintaining fiber pigtail FOSS be used to check the polarization extinction ratio of a polarization-maintaining fiber?
A: No, a PFOSS with a rotator is required. Please see the Polarization Fiber Optic Stable Source (PFOSS) data sheet.

Q: Why can’t we order pigtail style FOSS?
A: Unit is now offered with a receptacle interface. Customer can use an external patchcord to attach permanently onto the source to convert as a pigtailed source.

Q: What affects the source stability?
A: Temperature changes and backreflection from the fiber are the two main factors that affect the source stability. A thermo-electric (TE) cooler increases the stability by maintaining the laser diode at a stable temperature. The instability caused by backreflections can be reduced by using angled (APC) connectors, or removed completely by using an isolator. Please see the Highly Stable Laser Diode Source (HIFOSS) data sheet for details.

Q: Are the diodes used in your sources DFB diodes?
A: Normally we use standard Fabry-Perot (FP) cavity laser diodes. Distributed Feed Back (DFB) laser diodes provide narrow linewidths and improved side band suppression. They can be provided as an option. However they are more expensive and not available for all wavelengths.

Q: I purchased a 1550 nm source from OZ Optics, but my spectrum analyzer says it is actually a 1544 nm source. Why?
A: While the nominal wavelength of the source is 1550 nm, in fact the tolerance at this wavelength is ±20 nm. This is due to variations in the manufacture of commercial laser diodes. OZ Optics can provide sources for a specific wavelength, but only at additional cost.

Q: Do you offer 1.25mm and 2.5mm ID universal adaptors for your sources?
A: We can, but we do not recommend them. Universal adaptors do not have a retaining mechanism, so the fiber can fall out if you do not hold it in place. In addition, the lack of a retaining mechanism will cause the coupled power from the source to be unstable. Universal receptacles can be used in applications where you are not concerned with the power stability, such as visible sources for fault location, or PFOSS or HIPFOSS polarized sources for PM fiber patchcords.
Application Notes:

The OZ Optics Fiber Optic Laser Diode Source (FOSS) is a hand-held, low-cost, portable device. It is ideal for field use, as well as for laboratory research applications. The FOSS laser source series offers excellent stability and portability for accurate fiber optic testing and other applications. The device is configured with one of many different wavelengths, optional adjustable output power, and the choice of many connector types. The FOSS incorporates several built-in modulation features to satisfy almost any laser source requirement.

Insertion loss measurement and attenuation measurement:
When used with an optical power meter, the FOSS laser source provides an inexpensive alternative to high-priced loss test sets. The FOSS can be substituted for terminal equipment in the central office or head-end to provide stable output for loss measurement.

For singlemode applications, such as telecom or CATV environments, the FOSS can be coupled with an optical power meter to form a test kit that performs optical loss tests at 1310 or 1550 nm.

Visually optimizing splices and connectors:
Optical splices, especially the mechanical type of splice, are often visible when light from a visible FOSS is transmitted through the fiber. An improperly made splice losses light at the joint between the two fibers. When there is a clear or translucent area near the splice, use the visible FOSS to optimize the splice. The light from the FOSS is visible; therefore, the splice loss can be seen while the fiber is pushed, pulled, or rotated to reduce the loss. When the escaping visible light is minimized, the loss is minimized.

Fiber identification using internal modulated mode:
The visible FOSS can also be used to find fiber that is broken or to trace a path of a fiber from one end to another, through many connections. Visible signs of damage, such as a broken reel, can easily be seen. In the modulation mode, the FOSS applies, for example, a 2 kHz tone into the fiber. An optical identifier, to isolate specific fibers in a bundle prior to splicing or rerouting without interrupting service, can detect this signal.

Easy to use:
To trace fiber with a visible FOSS, connect the fiber to be traced to the output connector of the unit. The red light output is visible at the other end of the fiber. This application is used to easily find a particular fiber within a multi-fiber cable bundle during installation.

To test for continuity, attach the fiber to be tested to a visible FOSS. If the light is visible at the far end, the fiber is not damaged.

Choosing CW or modulation mode:
Unlike many other fiber optic laser diode sources, the OZ Optics FOSS features a choice of continuous wave or modulated output. To change the mode, simply press the mode key on the front panel to select 270 Hz modulation. Press the mode key again to select the 1 kHz or 2 kHz modulation setting. The default state is CW mode when the device is powered on.

Maintenance:
To ensure the best performance of the FOSS, some simple maintenance is required.

Cleaning the connector:
A clean output connector ensures that good connections are made between the FOSS and the fiber under test. Failure to clean connectors can cause permanent damage to both the fiber end and the connector of the FOSS. When the output light appears circular by projecting against a piece of white paper with a visible source, or on an IR viewing card with an infrared source, with little or no scattering, the connector is clean. If the light is not approximately circular, clean the connector with compressed air or a fresh lint-free tissue and alcohol.

Changing the batteries:
The FOSS can use AC/DC power or battery power. The battery indicator is shown on device LCD display.

Auto Turn Off Mode:
The FOSS is equipped with an auto turn-off feature, which will turn the unit off after a preset time. This feature can be disabled by the user.

Using Bare Fibers
To use an unterminated fiber, we also recommend using the OZ Optics Bare Fiber Adaptors with Magnetic Clamp (http://www.ozoptics.com/ALLNEW_PDF/DTS0003.pdf). When using a bare fiber with the device, take great care to ensure that the bare fiber tip does not extend beyond the adaptor tip. Otherwise you may scratch the optics inside.