Distributed Strain and Temperature Sensor

OZ Optics Limited

September 2024

Table of Contents

- **Company Background**
- Corporate Statements and Quality Policy
- **Company Profile**
- **Core Competencies**
- Leading Technology

- Industry Standards
- Marketing Strategy
- Operation Strategy
- OZ Optics Canada
- OZ Optics Türkiye
- **OZ Optics China**

Company Background

- Founded in 1985
- **Corporate Headquarter Located in Ottawa, Canada**
- Manufacturing Facility in Ottawa / Canada, Izmir / Türkiye and Jiaxing / China

Ten Product Groups:

- Laser-to-Fiber Delivery Systems
- High Power Fiber Optic Components
- Polarization Maintaining Products
- Attenuators
- Opto-Electronic Packaging
- Fiber Optic Test Equipment
- Fiber Optic Sensor Systems
- Fiber Optics Components for Gyroscope
- OCT
- BioPhotonics
- Quantum

Ottawa, Canada

Izmir, Türkiye

Jiaxing, China

Corporate Statements and Quality Policy

Our Vision

Capture and expand market share
 Be the preferred supplier of choice
 Maximize shareholder value

Our Mission

To become the leading provider of innovative optical products to telecom and non-telecom sectors

Our Core Values

- ✓ Leadership
- ✓ Teamwork
- ✓ Boldness
- ✓ Commitments
- ✓ Innovation
- ✓ Rewards

Our Quality Policy

Provide our Customers with a competitive advantage, leveraging performance, price and delivery, through a continuous process of Quality advancement in all areas of our Company.

Communicate effectively to our Customers, Suppliers and Shareholders our commitment to Quality, continuous improvement and to abide by any applicable requirements.

Promote opportunities of professional development for all members of our company through education, training and personal challenge.

Over 467 employees worldwide

OZ Canada

OZ China

OZ Türkiye

243+ Employees

87+ Employees 137+ Employees

Advanced Proprietary Processing Technology

Canada Certificate: FM 63463

China Certificate: FM 577647

1.3

12-105 Le: Rose Building 1 Ro. 380 Hunting Road

bsi.

REPORT - IN MALINE

Annala, Munici Annala, Munici

و 🕲 🏟

-

Certificate of Registration

ISO9001:2015 Certified

Turkey Certificate: FM 601414

The Director of the United States Patent and Trademark Office

Has received an application for a patent for a new and useful invention. The title and description of the invention are enclosed. The requirements of law have been complied with, and it has been determined that a patent on the invention shall be granted

United States Patent

Grants to the person(s) having title to this patent the right to exclude others from making, using, offering for sale, or selling the invention throughout the United States of America or importing the invention into the United States of America, and if the invention is a process, of the right to exclude ob-ers from using, offering for sale or selling throughout the United States of America, or importing into the United States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2) or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(h). See the Maintenance Fee Notice on the

Broad Patent Portfolio

OZ Optics is Lead by an Experienced Team:

- Ömür Sezerman, Chairman, President & CEO Founder and CEO since inception (40 years) Zahide Sezerman, VP of Human Resources With OZ Optics since inception (40 years) **Garland Best, VP of Components Division** 33 years at OZ Optics **Gordon Youle, VP of Test Equipment Division** 26 years at OZ Optics **Saeed Pilevar, Senior VP of Business Development** 3 months at OZ Optics
- Onur Koca, General Manager of OZ Türkiye
 - 3 year at OZ Optics
- Bing Li, General Manager of OZ Optics China
 21 years at OZ Optics

Experienced and Well-Trained Staff in Following Fields: Optical, Mechanical, Electronics & Software

CNC Machine Shop

Clean Room

Femto-Second Laser Lab

Laser Conditioning / Cleaving

AR Coating

Core Competencies

- Pioneer in Polarization Maintaining (PM) Components & Custom Test Equipment, Including Polarization Test Equipment and FTTH Equipment
- Leader in Wavelength Flattened, High Power & Low PDL Components
- Leader in High Power Fiber Optic Delivery Systems
- Widest Range in Attenuator Product Offering
- Fiber Optic Distributed Strain and Temperature Sensors
- Complete product line for OCT, Gyroscope & BioPhotonics applications & 2 Micron
- Now available: Spectrometers and Quantum Light Sources

Three Product Groups > Over 1,000 Products > Leading Edge R&D

Leading Technology Featured Products

OL OPTICS UMITED

World's Largest Online Fiber Optic Catalog Most Products are in Stock

Polarization Maintaining Fiber Optic Components Patent Numbers: USA 7058275 7095931, 7295731, China 1672073

Fiber Optic Components Patent Numbers: Canada 2494133, USA 7058275, 7095931, 7295731, China 1672073 High Power, High Temperature Connectors and Patchcords OZPEN™ GO₂ Fiber Optics Cleaning Unit for High Power Components High Power Laser to Fiber **High Power Mode Field Adapters** Couplers, Collimators and Focusers High Power Optical Taps and **High Power Isolators Power Monitors High Power Splitters and** Shutters, Receptacies and Sieeve Thru Adapters with Sensors Wavelength Division Multiplexers (WDMs)

High Power

Leading Technology Featured Products

Fiber Optic Attenuators Polarization Maintaining, Single Mode and Multi-Mode Fibers Variable Attenuators Electrically Controlled **Digital Variable MEMS Variable** Attenuators PM, SM and MM Fibers Single and Multi Channel Miniature **Reflective Style** Pigtailed Inline Variable Attenuators Variable Attenuators Variable Attenuators -Attenuating Filter Air Gap Plug Type Patchcords Variable Attenuators **Fixed Attenuators**

Fiber Optic Components for Optoelectronic Packaging Hermetically Sealable Patchcords with Glass or Metal Solder

Polarization Measurement Tapered, Lensed Fiber, System for V-Grooves Polished and Laser Shaped

Fiber Optic Components for 2 Micron Wavelengths

Featured Products

Fiber Optic Products for Gyroscopes

Isolators

Quantum Entangled Photons Sources 1 1 4 - 11.1 · 🛄 🕴 🔊 😵 🚺

Hyper-Entangled Photon Source Broadband Telecom Polarization-Entangled Photon Source Broadband Telecom

Bright Polarization-Entangled Photon Source Broadband Telecon Bright Polarization-Entangled Photon Source Narrowband Telecom

Correlated Photon Pair Sources Polarization-Entangled Photon Source Narrowband at 810 nm

Polarization Entanglement Tomography Analyzer

SM and PM Fiber **Pintailed Circulators**

Featured Products

High-Resolution

High and Low Power

Patchcords

Pigtail, Receptacle Style Collimators and Focusers

Wavelength Division Multiplexers

and Beam Splitters

Fiber Optic Products for Biophotonics Applications

Universal Optical DNA Rapid Detection Systems for Pathogens

Fiber to Photodiode Couplers with Removable Filters

High Power Laser to Fiber Couplers

Fiber Optic U-Bracket

Assemblies

Turnkey, Ultra Stable Laser Modules

Universal Optical DNA Rapid Detection System For Pathogens Including: COVID-19, SARS, EBOLA, CHOLERA, SALMONELLA, ETC.

Features Use to detect viral, fungal, and bacterial DNA/RNA Rapid DNA/RNA detection (as little as 20 minutes) Highly sensitive and specific detection of low viral levels Intuitive software displays real time data during testing Melt analysis available with the included software Lid heater prevents evaporation and condensation Compact modular design allows for easy cleaning and maintenance Pair with an external battery for a portable and field-deployable system Test up to 8 samples simultaneously (higher throughput systems with up to 96 samples available upon request)

 Wireless communication with dual-band Wi-Fi and Bluetooth connectivity • A fraction of the cost of gPCR based systems OZ Optics also offers private labelling for volume OEM applications

LAMPPY was compared to a well-known conventional gPCR machine in performance and speed. The comparison study

was carried out with a sample size of 262 using the COVIX LAMP-based kill on both Instruments and then verified with the KrosQuanT SARS-COV-2 (2019 nCOV) Real Time PCR Diagnostic Kit on a leading brand conventional qPCR machine

Fiber Optic Sensors for

Pipeline Monitoring

USA Patent Numbers: 7499151, 7599047, and 9568307

 Pipeline leakage detection BOTDA only, BOTDR only, or both BOTDA and BOTDR modules in one unit Fast, dynamic measurement of strain and/or temperature up to 200 km sensing range

 Sensitive detection of corrosion / erosion, cracks and buckling Simultaneous measurement of strain and temperature

Uses standard telecommunication fiber to minimize costs

Corrosion and Erosion Monitorin

Fire Detection

Featured Products

Fiber Optic Sensors for **Fire Detection**

USA Patent Numbers: 7499151, 7599047, and 9568307

BOTDA only, BOTDB only, or both BOTDA
 Simultaneous measurement of
 and BOTDR modules in one unit
 strain and temperature

 Fast, dynamic measurement of strain and/or temperature up to 200 km Uses standard telecommunications liber to minimize costs

Fiber Optic Sensors for Bridges, **Dams and Buildings**

USA Patent Numbers: 7499151, 7599047, and 9568307

BOTDA only, BOTDR only, or both BOTDA Simultaneous measurement of and BOTDR modules in one unit strain and temperature

sensing ran

 Fast, dynamic measurement of strain and/or temperature up to 200 km Uses standard telecommunication fibers to minimize costs

Fiber Optic Sensors for Power Line and Smart Power **Generator Monitoring**

USA Patent Numbers: 7499151, 7599047, and 9568307

BOTDA only, BOTDR only, or both BOTDA Simultaneous measurement of and BOTDR modules in one unit strain and temperature Fast, dynamic measurement of strain and/or temperature up to 200 km

sensing ra

 Uses standard telecommunication fiber to minimize costs

lerground Power Line Monitoring **Power Line Monitoring**

Optical Ground Wire (OPGW)

Gas Generator Monitorin

USA Patent Numbers: 7499151, 7599047, and 9568307

BOTDA only, BOTDR only, or both BOTDA and BOTDR modules in one unit

 Simultaneous measurement of strain and temperature

Fast, dynamic measurement of strain and/or temperature up to 200 km sensing rang

Uses standard telecommunication fiber to minimize costs

Border Security Monitoring

Highway Health Monitoring

Industry Standards

All Products Manufactured are in Strict Accordance with International Industry Standards:

- ISO 9001:2015 Certified (Canada, China and Türkiye)
- **REACH Compliance**
- RoHS Compliance
- CE Compliance
- Telecordia Compliance
- Controlled Goods Directorate Registered
- Critical Supplier for F35 and F18 Project
- TSCA (Toxic Substance Control Act) Compliance
- CHEMSHERPA Compliance
- IEC 61010 Compliance

Marketing Strategy Application Market

Using our strong direct sales and distributors, we address the following markets:

- Energy Oil and Gas
- Military and Homeland Security
- **Educational**
- Industrial
- Telecom / Datacom
- Medical & Pharmaceutical

Marketing Strategy Application Market

By leveraging the technology and expertise gained since its inception, OZ Optics has attracted a broad range of customers in the telecom / datacom, medical, military, security, industrial, construction, aerospace, power utilities, petrochemical and educational sectors.

Marketing Strategy Global Sales Network

OZ Optics has resellers and distributors in over 30 Countries and Regions with over 10,000 customers worldwide:

Presence

Marketing & Operation Strategy

Competitive Advantage

- **Superior Technology Innovative Engineering**
- **Competitive Pricing**
- **Global Presence**
- **Extensive Experience In Fiber Optics Manufacturing**
- **Exceptional Quality and Service**

OZ OPTICS CANADA (Headquarters)

OZ OPTICS TÜRKIYE (Türkiye Factory)

Facility - Ottawa Headquarters

60,000 sq ft. - Manufacturing and R&D Facilities 15,000 sq ft. - Admin, Sales and Marketing 15,000 sq ft. - Training and Fitness Facilities

Facility - Ottawa Headquarters

Production Area

OL OPTICS

Facility - Türkiye Factory (Izmir, Türkiye)

- **Operational Since 2000**
- 33,000 sq ft. Manufacturing Facility
- Located in Free Trade Zone
- Low Tax Rates
- Sub Component Parts Manufacturing
- High Quality Labor
- AR Coating Machine & Clean Room onsite

Facility - China Factory (Jiaxing, China)

- **Operational Since June 2010**
- Wholly Foreign Owned Enterprise
- Cost Effective Manufacturing
- High Quality Labor
- Supply Chain Integration

Branch Network Facility - China Factory (Jiaxing, China)

- Located in Economic Development Zone
- 4000+ sq meters Total Area
- 500 sq meters Administration, Sales and Marketing
- 3500 sq meters Manufacturing Area
- √ 500 sq meter Class 10,000 Clean Room
- √ 300 sq meter ESD Working Area

OZ Optics China

Zhejiang OZ Optics Technologies Co., Ltd

- **Operational since June 2010**
- Wholly Foreign Owned Enterprise
- NPI & Production Line Setup
- On-site Training by OZ CND
- Began Mass Production in September 2010
- Completed Main Facility Expansion in 2019

Conventional Temperature & Strain Sensors

- **Temperature Sensor: Thermocouple**
- **Strain Sensor: Electrical Strain Gauge**
 - Temperature Influence
 - Electromagnetic Interference (EMI)
 - Humidity Influence
 - Point Sensor

Fiber Optic Sensors

Advantages of Fiber Optic Sensors

- Electrically insulating materials (no electrical cables are required)
 high voltage environments
- Chemically passive, not subject e.g. to corrosion
- Immune to electromagnetic interference (EMI)
- Wide operating temperature range

Fiber Bragg Grating Sensor

- Strain resolution and accuracy: < 2 με
- Cannot distinguish strain and temperature
- Point sensor

Distributed Fiber Optic Sensors

- Raman scattering based only temperature
- Brillouin scattering based both temperature and strain
- Rayleigh scattering based DAS, Luna (70 m long sensing fiber)

Fiber Optic Sensors

Fiber Bragg Grating Sensor

- Sensor medium: Fiber Bragg grating
- Laser source and data acquisition system: Spectrum analyzer

Distributed Fiber Optic Sensors (Brillouin Sensors)

- Sensor medium: Conventional communication fiber (such as SMF, LEAF, etc..)
- Laser source and data acquisition system: Brillouin sensor system
 - **OZ Optics** [Foresight[™] DSTS (Distributed Strain and Temperature Sensors)]
 - **Omnisens** (STA)
 - Yokogawa (AQ8603) (Discontinued)
 - Sensornet (DTSS)
 - Neubrex (Neubrescope)
 - fibrisTerre (fTB 2505)
 - febus

Working Principle — BOTDA

T and \mathcal{E} are variables. In order to differentiate these two variables, Brillouin peak in the spectrum is required.

Working Principle — BOTDA

 $v_1 - v_2$

 $\nu_{\rm B}$

 v_2

CW

 $v_B = v_{B0} + C_T (T - T_0) + C_{\varepsilon} (\varepsilon - \varepsilon_0)$

Comparison of BOTDR and BOTDA

3U + Laptop, 4 Channel Model

Foresight[™] DSTS Awards & Accolades

Silver Level Winner

NORTH AMERICAN FIBER-OPTICS BASED STRUCTURAL HEALTH MONITORING SYSTEMS TECHNOLOGY INNOVATION AWARD

US Patents #: 7499151, 7599047 and 9568307

Merits of DSTS BOTDA

- **Coherent Amplification of Brillouin Scattering Signal**
- \Rightarrow Longest measured range (200 km fiber length)
- Narrowest Brillouin Spectrum (~ 45 MHz)
- \Rightarrow Highest resolution of strain and temperature
- Special Low Loss Fiber Components and Electronic Processing
 - \Rightarrow High stability of system
- With Proprietary Techniques, Brillouin Frequency Is Extracted Accurately
 Highest accuracy in measuring strain and temperature
 separately or simultaneously
 - **New Technology**

 \Rightarrow Quick measurement of strain and temperature (as low as 1 second: 1 Hz)

Merits of DSTS BOTDR

- Low Noise Detection for Weak Spontaneous Brillouin Scattering Signal ⇒ Long measured range (70 km in one direction) Special Low Loss Fiber Components and Electronic Processing
 - \Rightarrow High stability of system
- Sophisticated Design
- \Rightarrow Small size and light weight

Double End (A) Competitive Analysis

Company	OZ Optics	OmniSens	Neubrex	fibrisTerre
Technology	BOTDA	BOTDA	BOTDA	BOFDA
Maximum Sensing Range	(fiber length up to 200 km)	60 km (120 km max. total fiber loop distance)	27 km	25km
Channels	Internal 4 External 24 More channels optional	Internal 4 up to 20 channels via external SO-N Switch module	N/A	N/A
Highest Spatial Resolution / Spatial step (sample interval)	10 cm ¹ / 5 cm	50 cm / 25 cm	2 cm / 1 cm	50 cm / 5 cm
Dynamic Range at highest spatial resolution	7 dB	N/A	0.5 dB	N/A
Strain / Temperature Accuracy (Repeatability)(σ)	2 με / 0.1 °C (1 m spatial resolution / 2 km fiber / 1 minute 40 seconds)	2 με / 0.1 °C (1 m spatial resolution / 2 km fiber / 10 minutes)	7.5με / 0.35 °C	2 με / 0.1 °C
Strain / Temperature Resolution	0.1 με / 0.005 °C	2 με / 0.1 °C	N/A	N/A

Specifications of other vendor's products are based on their public datasheets.

1) Based on scientific definition, the spatial resolution is defined by pulse width. 10ns pulse width is equivalent to 1 m spatial resolution while 1ns pulse width is equivalent to 0.1 m spatial resolution.

Single End (R) Competitive Analysis

Company	OZ Optics	OmniSens	Neubrex	Febus
Technology	BOTDR	BOTDR	BOTDR	BOTDR
Channels	Internal 4 External 24 More channels optional	Internal 4 up to 20 channels via external SO-N Switch module	N/A	N/A
Maximum Sensing Range	70 km (max 100 km)	45 km	27 km	30 km (max 100 km)
Highest Spatial Resolution / Spatial step (sample interval)	1 m ¹ / 5 cm	1.5 m / 25 cm	0.5 m / 5 cm	1m
Dynamic Range at highest spatial resolution	10 dB	10 dB	2 dB	N/A
Strain / Temperature Accuracy (Repeatability) (σ)	10 με / 0.5 °C	20 με / 1 ºC	30 με / 1.5 °C	10 με / 0.5 °C
Strain / Temperature Resolution	0.1με / 0.005 °C	2 με / 0.1 °C	N/A	N/A

Specifications of other vendor's products are based on their public datasheets.

1) Based on scientific definition, the spatial resolution is defined by pulse width. 10ns pulse width is equivalent to 1m spatial resolution while 1 ns pulse width is equivalent to 0.1 m spatial resolution.

Combo Unit Competitive Analysis

Company	OZ O	ptics	Omni	Sens	Neubrex	
Technology	BOTDA	BOTDA BOTDR		BOTDR	BOTDA	BOTDR
Maximum Sensing Range	(fiber length up to 160 km)			45 km	27 km	27 km
Channels	Internal 4 External 24 More channels optional		Internal 4 up to 20 channels via external SO-N Switch module		N/A	
Highest Spatial Resolution / Spatial step (sample interval)	10 cm¹ / 5 cm	1 m¹ / 5 cm	50 cm / 25 cm	1.5 m / 25 cm	2 cm / 1 cm	0.5 m / 5 cm
Dynamic Range at highest spatial resolution	7 dB	10 dB	N/A	N/A	0.5 dB	2 dB
Strain / Temperature Accuracy (Repeatability)(σ)	2 με / 0.1 °C (1 m spatial resolution / 2 km fiber / 1 min 40 secs)	10 με / 0.5 °C	2 με / 0.1 °C (1 m spatial resolution / 2 km fiber / 10 mins)	20με/1ºC	7.5 με / 0.35 °C	30 με / 1.5 °C
Strain / Temperature Resolution	0.1 με / 0.005 °C	0.1 με / 0.005 °C	2 με / 0.1 °C	2 με / 0.1 °C	N/A	N/A

Specifications of other vendor's products are based on their public datasheets.

1) Based on scientific definition, the spatial resolution is defined by pulse width. 10ns pulse width is equivalent to 1m spatial resolution while 1ns pulse width is equivalent to 0.1m spatial resolution.

Detailed Comparison Facts

Sensing Range - The Longest Functional Measurement Fiber Length. Results comparison between OZ unit and other vendor's unit. Fiber under test is 101km long. Results are displayed below. Same test configurations are applied.

Other Vender

Brillouin Center Frequency vs Fiber Length (Full Scale)

Brillouin Spectrum at 80km. Reasonable Spectrum can be only found at 55km.

Brillouin Spectrum at 100.5km.

Comparison: DSTS BOTDA and Raman based DTS

Company	OZ Foresight [™] DSTS	Raman based DTS
Max Fiber Length	200 km round-trip (physical distance 100 km)	20km (MM)
Fiber Type	Standard telecom singlemode	Multimode
Response time @ 20km, 2C Resolution	30 seconds to 3 minutes	More than 10 minutes
Configuration	Single ended or double ended	Single ended or double ended
Measurement Base and Precision	Frequency based No calibration required after setup Not sensitive to attenuation changes	Intensity based Require calibrations Sensitive to attenuation changes
Dynamic Range	25-30 dB Allows better immunity to attenuation Wider measurement range and longer use of installed fiber	3-4 dB May fail when attenuation increases
Measurand	Temperature and Strain	Temperature
Measurement Resolutions	Comparable @ several seconds	Comparable @ over 1 minute

Competitive Analysis

New Features

- Switched to only 3U design with laptop computer (1U PC is option only per demand and will increase the overall cost due to limited availability).
- Full DLL Support
- Auto-Recovery from Power Outage
- Auto Channel Switch allows continuous scans between channels.
 Various switches are available.
- Optional SCADA interface under development and will be available within 2 months.

New GUI Login

💮 DSTS2 Login			? ×
Username: Password:			
Login Help	Register/ Reset Password	Play Video	Exit

Database

Database Search		2 ×	🔶 Database Management	?
Search Criteria	Detail (description):	Channel No.: 1	Search Database	Import Database
Detail: Channel: External Switch CH1 Calendar Calendar	Basic Measurement Baseline ch1	Fiber Length: 30.00 Fiber Type: SMF28e Pulse Width: 5	Import Directory Copy Database	Import Directory Tree
To: Calendar Bassic Measurement Baseline ch3TC		Spatial Step: 0.1m Average No.: 1000 Input Range: 500mV	Select Database	Database Aging
Basic Measurement Baseline ch4 Basic Measurement Baseline ch3 Basic Measurement Baseline ch2 Basic Measurement Baseline ch1	=	Start Frequency: 10699.00 End Frequency: 10989.00 Frequency Step: 10.00	Export Database	Automatic Export
Baseline_Jun291017_5 Baseline_Jun291014_3 Baseline_Jun291013_1 test	Date/Time: 2017/07/17 09:35:03 UUID: c58113f66af411e7a204bc305bad2256 Category: BOTDA	Fiber Type 1: Fiber Type 2: Connection Point: 15.00		Cancel
ch2TC ch3TC ch4fiber ch3fiber	Measurement Type: Baseline Imported: Not imported			
ch2fiber Search OK Cancel	Imported Path:			
Change Database Export File Load File	Change Detail Delete			

Measurement Screens

stem Help							
D 🗆 🗅 🍮							
Setup Basic Measurement Simultaneo	is Measurement	Dynamic Mea	surement	Data Analyze	Log		
	Baseline	Fast Baseline	Waveform	Spectrum	Relative Strain	Relative Temp.	Absolute 5 4
				Ба	seline	x=1000.33, y	=10852.804
	11000						
	c: 10900						
	W						
Auto Channel Switch:	10900 (10900 (10900 (10900 (10900)	~					
	£ 10800						
	10700						
	10,00	0 1					8
Auto Save Processed Data							
Auto Seve Rev Date	Baseline (MHz): 10852.80					
Auto Save Prequency Data	Distance (m):	1000.33	Marker		Traces		
Load Processed Load Raw Load Preq.	Channel: CH Pulse Width		Spatial Step Average No. 1		 Current 		
Save Dian The Pres	Fiber Type:		Input Range:				

	eous Measurement Dynai	mic Measurement Data Anal	rze Leg						
ntel Elber									
		0.2	6.1	0.4	0.5 Distance (n)	0.6	0.7	6.1	 1.0
					2-3-0-52 (H)				
Start (n): 112.38			Datarco(e):	0.09					
Dit Ther	Be • Fber Length (n)	90.90		Input Rangel	Auto	•			
	Pulse Width (ns):	10		Process Methods					
	Spatial Step (m):	5.00n	•	General Analysis		•			
	Average Number:	2000							
	Start Prog. (MHD): 8	548. Freq 150.40		= 10199.52					
	End Press (Phile): Br	4. Pres. + 205.08		- 11246.65					
	Freq. Step (HHV):	4.4							

Setup Basic Measurement Simu	litaneous Measurement	Dynamic Mea	surement	Data Analyze	Log		
	Baseline	Fast Baseline	Waveform	Spectrum	Relative Strain	Relative Temp.	Absolute 5
						x=1000.	.33, y=0.305
		Te	mperature	Change @	Wed Jul 12 1	5:25:43 2017	
	10						
Continuously Scan per (mins):							
Partial Data Process (m):	e (°C						
om: 0 To: 8000	Temperature (°C) o						
Reprocess	adua						
Auto Channel Switch:	₽						
	-10	0 1			4 5	6 7	8
					ince (km)		
		perature (°C): 0.					
Auto Save Processed Data	Relative Temp	perature (°C): 0.	305		1		
Auto Save Raw Data	Distance (m):	4000.00	Marker		Traces		
Auto Save Frequency Data	Distance (m):	1000.33	Marker		2 0		
Min	Max Channel: Ch		Spatial Step	0.50	3		
Load Processed Load Raw Load	Freq. Pulse Width Fiber Type:	: 10ns	Average No.: Input Range:	1000	4		
Multi Save	riber type.	JULY 20E	Input Kanye	. 27			

OZ Optics ForesightTM DSTS Benefits

- **Reducing Risk and Influence of Failure**
 - **Fast Response**
 - Status Trend in Long Term
 - Full Range of Coverage
- **Reducing Operating Expenses**
 - **No Future Re-Calibration of Unit**
 - **Expected Cable Life over 20 Years**

Applications

Oil and Gas Pipeline Monitoring

Dyke and Levee Monitoring

Power Line Monitoring

Oil and Gas Well Monitoring

Bridge and Building Monitoring

Border Security Monitoring

Oil and Gas

- **Pipeline Leakage Monitoring**
- Well Integrity Management
- **Refinery Temperature Monitoring**

Pipeline Leakage Monitoring System

Policy Requirement

Economic Requirement

Third Party Evaluation

Leakages from a 1/8" orifice with an injection pressure as low as 22 psi, and a temperature difference of 20°F between the soil and line temperatures, have been easily detected and accurately located.

- An impressive leakage detection response time of less than 2 minutes has been achieved.
- Evaluation was done under laboratory conditions over a period of one month, by Southwest Research Institute (SwRI) and funded by major oil companies through a joint industry program.

Performance

OL OPTICS UMITED

Large leakage detection from 1/8" orifice with 400 psi injection pressure, soil temperature before test: 85°F, line temperature: 115°F

Small leakage detection from 1/8" orifice with 50 psi injection pressure, soil temperature before test: 73°F, line temperature: 90°F

Soil Temperature Monitoring

Pipeline Corrosion Monitoring

Pipeline corrosion monitoring in Canmet Materials Technology Laboratory, NRCan, Ottawa, NACE International — Corrosion 2008 Conference and Expo, New Orleans (Louisiana, USA 16-20 March, 2008).

Pipeline Corrosion Monitoring

Pipeline corrosion monitoring in Canmet Materials Technology Laboratory, NRCan, Ottawa, NACE International — Corrosion 2008 Conference and Expo, New Orleans (Louisiana, USA 16-20 March, 2008).

Refinery Temperature Monitoring

- **Refineries use reactors and pressure vessels** to transform heavy oil into synthetic crude oil.
- The upgrader reactors are operated at very high temperatures, exceeding 500 °C.
- Due to the thermal stress exerted on the structure of the reactor, a wall-thinning problem might occur, resulting in conductive heat dissipation.
- Without the proper sensing technology, the refinery operator might prematurely shut down operations to perform untimely maintenance, or worse yet, the problem might go unnoticed, resulting in a catastrophic accident.

Pipeline Buckling Detection

Pipeline buckling detection in TransCanada Pipeline Ltd, Calgary, and C-FER Technology, Edmonton

Metal/Polyimide Coated Hermetic Fibers

Coating Materials and Maximum Sustainable Temperatures

- **UV-Cured Acrylate** 100°C
- UV-Cured Dual Acrylate 150°C
- Polyimide 400°C
- Copper + Polyimide
- Aluminum
- Copper Alloy
- Gold

450°C 600°C 700°C +

400°C

Power Utility

- **OPGW Monitoring**
- **Power Cable** (Submarine Cable) Monitoring
- Temperature Profile Monitoring of an Air-Cooled Gas Generator

OPGW Monitoring

- Monitoring the Working Status of Opgw
- **Abnormal Event Found and Located**
- Event Caused by Broken Strand, Lightning, Frost Covering, Change of Strain, Etc..

OPGW Status Monitoring

- The OPGW is located from Smith Falls to Merivale-Ottawa, Ontario, Canada.
- The total fiber length was close to 140 km.
- The BOTDA located in Merivale-Ottawa made measurements as often as once every 60 minutes starting in June 2012 and continuing till July 2013.

OPGW Strain Monitoring

Power line/OPGW monitoring in Hydro-Quebec, Montreal

High Voltage Underground Cable with Fiber

Temperature Profile Monitoring of an Air-Cooled Gas Generator

Concrete Beam/Highway Monitoring

Concrete beam/Highway monitoring on HW40/University of Sherbrooke, Dr. Brahim Benmokrane

GeoDetect With Embedded Fibers

Christchurch Northern Corridor (CNC) – Measuring settlement with fibre optics

Christchurch Northern Corridor (CNC) – Measuring settlement with fibre optics	
NZTRANSPORT / Christchurch	
AGENCY Christchurch Christchurch Northern Corridor	

CNC ALLIANCE PROJECT FEATURES

Project engineer Stephen Coleman talks about innovative fibre optics to measure settlement

New Zealand Government

Crack Detection

Crack detection in University of California, Irvine, Dr. Maria Feng, 19th International Conference on Optical Fiber Sensors, Perth (Australia, 14-18 April 2008).

Crack Detection

Crack detection in University of California, Irvine, Dr. Maria Feng, 19th International Conference on Optical Fiber Sensors, Perth (Australia, 14-18 April 2008).

Brillouin Sensor Monitoring of Telecom Fibers

- Detects minor events that are too small to be seen by OTDRs.
- **Can replace OTDRs for monitoring fibers.**
- Can be used to monitor new or existing fiber installations.

Yogokawa's results from AT&T's old telecom fiber, very broad Brillouin spectrum, which results in poor resolution and accuracy.

- Permits performance monitoring of fibers above or below ground.
- Avoids unnecessary replacement of old fibers, saving millions of dollars in installation costs.

OZ's results from AT&T's old telecom fiber, very narrow Brillouin spectrum, which results in high resolution and accuracy.

The Cost of Catastrophic Failure

- **Example: Druzhba Pipeline July 2006**
 - **Small 50 Cubic Meter Leak Results In:**
 - Interruption of \$100M/Day Pipeline
 - Global Spike in Oil Prices
 - **Report of Environmental Catastrophe**
 - Months of Investigation and Ecological Monitoring
- Single Point of Failure in 3,000 km Pipeline

The Cost of Catastrophic Failure

- **Example 2: Nigerian Pipeline July 2006**
- Accidental Leak
- 180,000 Barrels / Day Shutdown
- 180,000 * \$74 = \$13M per Day
- 10-day Shutdown = \$130M
- Brillouin Operation << \$1/m/year</p>
- Single Production Shutdown Far Exceeds Lifetime Sensor Operating Costs.

Acknowledgements

- University of California, Irvine, Dr. Maria Feng
- University of Ottawa, Dr. Xiaoyi Bao
- **University of Sherbrooke, Dr. Brahim Benmokrane**
- TransCanada Pipelines Limited (TCPL)
- C-FER Technologies
- Canmet Materials Technology Laboratory, NRCan
- Hydro-Quebec
- Southwest Research Institute®
- Tencate Geosynthetics
- NZ Transport Agency
- Christchurch Northern Corridor
- CNC Alliance Project

Thank You for Choosing OZ Optics

Please Contact Our Sales Department: Tel: 613-831-0981 ext. 3370 Toll Free: 1-800-361-5415 Email: sales@ozoptics.com

