219 Westbrook Road Ottawa, ON, Canada, KOA 1L0

> Toll free: 1-800-361-5415 Telephone: 1-613-831-0981 Fax: 1-613-836-5089 sales@ozoptics.com

HIGH SPEED ELECTRO-OPTIC POLARIZATION CONTROLLER-SCRAMBLER

PRELIMINARY

Features:

- Rapid response time (< 10 μs)
- Linear response
- · Solid state crystals
- Low loss
- Flexible configuration
- · Compact in size
- Wide operating wavelength
- · Long operating lifetime

Applications:

- Polarization scrambling
- · Polarization stabilization and management
- Polarization Mode Dispersion (PMD) mitigation
- Polarization Dependent Loss (PDL) mitigation
- Polarization Dependent Gain (PDG) mitigation
- PDL, DOP, and PMD measurement systems
- Interferometers and sensors
- Fiber lasers
- Polarization demultiplexing
- Test instrumentation
- OCT systems

Product Description:

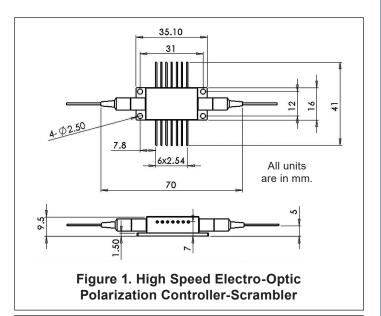
OZ Optics' High Speed Electro-Optic Polarization Controller (EOPC) is based on a novel, low-loss high speed free space Electro-Optic crystal technology. It provides a simple, efficient means to quickly manipulate the state of polarization by applying an external voltage. High-Speed polarization state management is enabled using two to four crystals in a row with remarkably low loss, all housed in a compact and robust butterfly package. The device can be offered with 2, 3 or 4 crystals (depending on the customer requirement), and by applying external voltages one can change/manipulate/control the output polarization state. For endless polarization control, a device with 4 crystal elements is required while a 3 elements device will be sufficient for polarization scrambling mode operation. The compact,

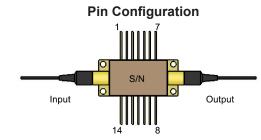
motionless and vibration free design allows fast linear response with less than 10 µs response time to the control signal. The controller's rapid response speed easily handles changes in polarization, caused by the external environment, and is highly suitable for polarization controlling and scrambling to either average PDL and PDG effects, or for making PMD, PDL or DOP measurements. This makes it ideal for precise test and measurement applications.

OZ Optics' offers as well a 4-channel driver, The "EOPC-1000-DRIVER-04" is a bench-top entry level module capable of controlling up to four channels Electro-Optic crystal based. The driver module converts the 0.0 to 4.0 Volts input analog control voltage signals to an amplified high-voltage output levels applied to the retardation plates of the (EOPC) crystals.

The "EOPC-1000-DRIVER-04" bench-top module includes the high voltage power supply circuit and the 4-channels high voltage high speed power amplifiers. The Electro-Optic Polarization Controller (EOPC) crystal is inserted on the lockable ZIF socket on top of the module. The simplified block diagram of the "EOPC-1000-DRIVER-04" is shown in the figure below.

Specifications: (tested at 23°C, controlled temperature)

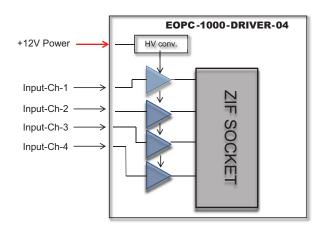

Parameters	Values						
Optical Performances							
Operating Wavelength ¹	1064 nm, 1550 nm, 2000 nm						
	4 stages	3 stages	2 stages				
Insertion Loss (IL) ²	< 1.2 dB	< 1.1 dB	< 1.0 dB				
Polarization Dependence Loss (PDL) ²	< 0.20 dB	< 0.20 dB	< 0.15 dB				
Polarization Mode Dispersion (PMD) ²	< 0.5 ps						
Activation Loss ²	< 0.05 dB Per Channel						
Return Loss ²	> 50 dB						
Optical Power Handling ³	500 mW						
Electrical Performances							
Response Time (Rise/Fall Time) ⁴	< 10 μs						
V_{π} (@room temperature) 5	V_{π} < 40 V for 1064 nm, V_{π} < 60 V for 1550 nm						
Modulation Rate (Sinusoid) ⁶	DC ~ 130 kHz						
Physical/Environmental Performances							
Operating Temperature	0 ~ 80°C						
Storage Temperature	-40 ~ 80°C						
Dimension (L x W x H)	70 mm x 41 mm x 9.5 mm						


Notes

- 1 Other wavelengths are available and tested with
- narrow-line width laser diode (DFB)
- 2 Measured at 1550nm
- 3 Higher power version is available.
- 4 Limited by the driver design.
- 5 Value depends on modulation frequency.
- 6 OZ Optics can provide a driver.

Specifications: For EOPC-1000-DRIVER-04

Parameters	Symbol	Min	Тур	Max	Units
Power Supply Input Voltage	Vin	11	12	13	Volts
Power Supply Input Current At Vin =12 Volts	I_supply	0.56		3.0	Amp.
Input control voltage: Input-Ch-1 Input-Ch-2 Input-Ch-3 Input-Ch-4	CH-1 CH-2 CH-3 CH-4	0 0 0 0		4.0 4.0 4.0 4.0	Volts
Output Voltage: Out-V1 Out-V2 Out-V3 Out-V4	V1 V2 V3 V4	0 0 0 0		170 170 170 170	Volts
Output Repetition Rate (Full scale) Load capacitance < 1nF		DC		100	KHz
Gain	80				
Rise/Fall time From 0 to 150 Volts		2.5	3	3.5	us
Operating temperature	T_(amb.)	0	25	40	Deg.C
Storage temperature	T_(sto.)	-40		80	Deg.C
Dimension (LxWxH)	2	mm			
Weight	768				grams



Default Electrical PIN layout for EEO module with built-in TEC

Pin	Description		Pin	Description		
1	TEC, -		8	Thermistor-2	33 kOhm	
2	GND-V1 (Ch-1)	9	Thermistor-2	33 KOIIIII	
3	GND-V2 (Ch-2)		10	V4 (Ch-4)		
4	GND-V3 (Ch-3)		11	V3 (Ch-3)		
5	GND-V4 (Ch-4)		12	V2 (Ch-2)		
6	Thermistor-1	10 kOhm	13	V1 (Ch-1)		
7	Thermistor-1	10 KOIIII	14	TEC, +		

- Pins related to uninstalled crystals may be left unconnected.
- Negative voltages must never be applied to V1, V2, V3, or V4.
- Maximum voltage rating must not be exceeded under any circumstances.
- Pins related to uninstalled crystals may be left unconnected.
- Negative voltages must never be applied to V1, V2, V3, or V4.
- TEC: Imax=2.5A Vmax=5 V
- · Ground electrodes are not connected to each other internally.

Description: Electro-Optic Polarization Controller

Part Number: EOPC-<u>A</u>-11-<u>W-a/b-I-O-XY-JD-L-T</u>

<u>A</u> = 200 for 2 electro-optic elements 300 for 3 electro-optic elements 400 for 4 electro-optic elements

<u>W</u> = Wavelength (specify in nanometers) —— Example: 1300/1550 for standard telecom wavelength range. 1060 for 1064 band.

<u>a/b</u> = Fiber core/cladding sizes, in microns 9/125 for 9/125 μm singlemode fiber. 6/125 μm for 1064 μm operating. See *Standard Tables* for other standard fiber sizes.

I = Input Fiber: -

S = Singlemode

P = Polarization maintaining

O = Output Fiber:

S = Singlemode

P = Polarization maintaining

See the *Standard Tables* data sheet for other standard fiber sizes and connectors.

https://www.ozoptics.com/ALLNEW_PDF/DTS0079.pdf

- <u>I</u> = T for Built-in TEC Blank for No Built-in TEC

<u>JD</u> = Fiber jacket type:

1 = 900 micron OD hytrel jacket

XY = Connector code:

X = No Connector

3S = Super NTT-FC/PC

3U = Ultra NTT-FC/PC

3A = Angled NTT-FC/PC

8 = AT&T-ST

SC = SC

SCU = Ultra SC

SCA = Angled SC

LC = LC/PC

See Standard Tables for other connectors.

Questionnaire For Custom Parts:

- 1. Are you performing polarization scrambling or polarization controlling?
- 2. What is your operating wavelength?
- 3. What type and size of fiber do you want?

- 4. What type of connectors do you need?
- 5. How long should the fibers be?
- 6. What is the fiber jacket OD?
- 7. Do you need an external driver?