

Distributed Temperature Sensing

Proof-of-Concept of Distributed Temperature Sensing
Using Fiber Optics

GUG August 28-31, 2017

Agenda

- Existing Temperature Sensing Issues
- Machine Configuration and FO Installation
- Test and Results
- Next Steps

EXISTING TEMPERATURE SENSING ISSUES

Existing Temperature Sensing Issues

- RTDs are highly localized sensors
- RTDs subject to premature failure
- RTDs can be damaged during routine testing
- RTD monitoring doesn't provide adequate protection for stator cores
- Thermal cameras during loop/ring tests could be inaccurate
- Presently impossible to correlate offline core test findings to online core temperatures

MACHINE CONFIGURATION

and FO Installation

Machine Configuration

Siemens Westinghouse – AeroPac I – Open Air Cooled

Machine Configuration

Radially Vented, Zone-Cooled Core

Machine Configuration

Fiber Optic Installation

TEST AND RESULTS

- Brillouin scattering-based distributed temperature sensing
- Brillouin scattering affected by temperature and strain
- Proven in other industries
- Baseline "cold" data taken for reference point
- System measures differential in scattering from baseline to discern temperature change

Comparison with Control Room Data

Load	Cold Air	Hot Air	Embedded	Av. Trough*	Av. Peak*
170 MVA	30.6°C	64.4°C	78.1°C	63.9°C	67.0°C
119 MVA	28.6°C	57.8°C	64.1°C	58.3°C	61.3°C
26 MVA	21.6°C	45.6°C	45.3°C	49.9°C	52.7°C

Load	Cold Air	Hot Air	Embedded	Av. Trough*	Av. Peak*
170 MVA	87.0°F	147.9°F	172.6°F	147.0°F	152.6°F
119 MVA	83.5°F	136.1°F	147.4°F	137.0°F	142.3°F
26 MVA	70.8°F	114.0°F	113.6°F	121.8°F	126.8°F

- Data compares well to known RTDs
- Unfortunately, 76 MVA data was not captured due to other Control Room priorities at the time

^{*} Not including the starting trough, or the last peak and trough due to strain affects

Data Anomalies

- Related to patch fiber splice location
- Patch fiber has bonded sheath, differentiating "sensor" from "lead" with sharp signal step
- Splice location easily resolved in refined assembly

- Stretch/distortion related to errant strain in fiber
- Related to the loop-back point
- More refinement and testing needed
- Should be relatively easy to resolve

Data Anomalies

- Should be symmetrical about center? Maybe...
- Maximum difference ~2.7°C (~4.9 °F)
- More heat on Collector End (CE) due to circuit rings and main and neutral connections
- Heavier resin coating over fibers on CE
- Very unlikely, but could be core issue

Collector End Resin

Turbine End Resin

Data Anomalies

- Should be the same temperature? Maybe...
- Maximum difference ~1.1°C (~2.0 °F)
- Different position, higher closer to core tooth
- Different ventilation exposure

Data Anomalies

- Should peak/trough the same axial locations from leg to leg? Maybe...
- One iron pack + one vent = 5.1 cm (2")
- Average leg-leg difference = 2.8 cm (1.1")*
- Maximum leg-leg difference = 6.0 cm (2.4")*

* Not including the last peak and trough due to strain affects

NEXT STEPS

Next Steps

- Loop-back refinement, shim-style installation, cable selection, routing, and frame penetrations
- Dual-sensing RTD/FO for reference temperature?
- Core installations during rotor-out outages
- Core installations during stator rewinds
- Specific region sensing
- How do we monitor? Periodic? Continuous?
- How do we set alarm points and trips?
- How do we integrate into the existing plant control systems?

Special Thanks

APPENDIX - OZ OPTICS

Additional details on how the temperature readings are obtained using Brillouin scattering

Light scattering

Brillouin Scattering

- inelastic scattering of light from acoustic phonons in a dielectric material.
 - Spontaneous and Stimulated Brillouin Scattering
- Difference between input and scattered beams = "Brillouin frequency"

$$v_B = \frac{2nv_a}{\lambda}$$
 n Refractive index
 λ Vacuum waveler

v_a Acoustic velocity

2 Vacuum wavelength

Brillouin Scattering

Sensing principle

Brillouin Spectrum

Mach-Zehnder modulator with two arms

$$E_{\text{out}} = \frac{\sqrt{2}}{2} \left(A_1 \cos(\omega t + \varphi_1) + A_2 \cos(\omega t + \varphi_2) \right)$$

$$I_{\text{out}} = |E_{\text{out}}|^2 = \frac{1}{2} [I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\varphi(t))]$$

$$\varphi(t) = \varphi_1 - \varphi_2$$

is time dependent due to the optical phase modulated by an applied voltage

$$\varphi(t) = 0$$
: maximum intensity output, $\varphi(t) = \pi$: minimum intensity output

$$\varphi(t) = \pi$$
: minimum intensity output

$$I_1 \neq I_2$$
 (AM), $\varphi(t)$ cannot be exactly equal to $\pi(PM)$ finite ER $R_x = \frac{(I_{\text{out}})_{\text{max}}}{(I_{\text{out}})_{\text{min}}}$

Pulsed laser generated by the EOM always contains a cw (DC) component

<u>L.-F. Zou</u>, et al, **Opt. Lett. 30 (4)**, 370-372 (2005).

Coherent interaction of pulse and

pump

Coherent interaction of pulse and

pump

$$\left(\frac{\partial}{\partial z} - \frac{1}{v_g} \frac{\partial}{\partial t} - \frac{1}{2}\alpha\right) E_p = \overline{Q} E_s$$

$$\left(\frac{\partial}{\partial z} + \frac{1}{v_g} \frac{\partial}{\partial t} + \frac{1}{2}\alpha\right) E_s = \overline{Q}^* E_p$$

$$\left(\frac{\partial}{\partial t} + \Gamma\right) \overline{Q} = \frac{1}{2} \Gamma_1 g_B E_p E_s^*$$

where

$$E_{s} = E_{out} = \begin{cases} A_{DC} \cos(\omega_{s}t + \varphi_{DC}) + a_{DC} \cos(\omega_{s}t + \varphi_{pulse}) \\ a_{pulse} \cos(\omega_{s}t + \varphi_{pulse}) \end{cases}$$

$$E_{p} = A_{pump} \cos(\omega_{p}t + \varphi_{pump})$$

$$\overline{Q}(z,t) = \frac{1}{2} \Gamma_{1} g_{B} \int_{0}^{t} E_{p} E_{s}^{*} e^{-\Gamma(t-t')} dt'$$

BOTDR and **BOTDA**

References

- L. Zou, et al.: Effect of Brillouin slow light on distributed Brillouin fiber sensors, **Opt.** Lett. 31, 2698 (2006).
- L. Zou, et al.: Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure, **Appl. Opt. 45**, 3372, (2006).
- L. Zou, et al.: Coherent probe-pump-based Brillouin sensor for centimeter crack detection, **Opt. Lett. 30**, 370 (2005).
- L. Zou, et al.: Distributed Brillouin temperature sensing in photonic crystal fiber, Smart Mater. Struct. 14, 8 (2005).
- S. Afshar V., <u>L. Zou</u>, et al.: Brillouin spectral deconvolution method for centimeter spatial resolution and high-accuracy strain measurement in Brillouin sensors, **Opt. Lett. 30**, 705 (2005).
- X. Bao, <u>L. Zou</u>, et al.: Effect of optical phase on a distributed Brillouin sensor at centimeter spatial resolution, **Opt. Lett. 30**, 827 (2005).
- Y. Wan, L. Zou, et al.: Subpeaks in the Brillouin loss spectra of distributed fiberoptic sensors, **Opt. Lett. 30**, 1099 (2005).
- L. Zou, et al.: Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber, **Opt. Lett. 29**, 1485 (2004).
- L. Zou, et al.: Distributed Brillouin scattering sensor for discrimination of wall thinning defects in steel pipe under internal pressure, **Appl. Opt. 43**, 1583 (2004).
- L. Zou, et al.: Brillouin scattering spectrum in photonic crystal fiber with partialy Ge-doped core, **Opt. Lett. 28**, 2022 (2003).

