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EXISTING TEMPERATURE SENSING ISSUES 
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• RTDs are highly localized sensors 

• RTDs subject to premature failure 

• RTDs can be damaged during routine testing 
• RTD monitoring doesn’t provide adequate protection for 

stator cores 

• Thermal cameras during loop/ring tests could be inaccurate 
• Presently impossible to correlate offline core test findings to 

online core temperatures 

 

Existing Temperature Sensing Issues 
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MACHINE CONFIGURATION 
and FO Installation 
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Siemens Westinghouse – AeroPac I – Open Air Cooled 
Machine Configuration 
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Radially Vented, Zone-Cooled Core 
Machine Configuration 
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Fiber Optic Installation 
Machine Configuration 
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TEST AND RESULTS 
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• Brillouin scattering-based 
distributed temperature sensing 

• Brillouin scattering affected by 
temperature and strain 

• Proven in other industries 

• Baseline “cold” data taken for 
reference point 

• System measures differential in 
scattering from baseline to 
discern temperature change 

Test and Results 
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Test and Results 
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Cyan 170 MVA 
Green 119 MVA 
Blue 76 MVA 
Red 25 MVA 

 



Test and Results 
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Test and Results 
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Comparison with Control Room Data 

Load Cold Air Hot Air Embedded Av. Trough* Av.  Peak* 
170 MVA 30.6˚C 64.4˚C 78.1˚C 63.9˚C 67.0˚C 
119 MVA 28.6˚C 57.8˚C 64.1˚C 58.3˚C 61.3˚C 
26 MVA 21.6˚C 45.6˚C 45.3˚C 49.9˚C 52.7˚C 

Test and Results 
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Load Cold Air Hot Air Embedded Av. Trough* Av.  Peak* 
170 MVA 87.0˚F 147.9˚F 172.6˚F 147.0˚F 152.6˚F 
119 MVA 83.5˚F 136.1˚F 147.4˚F 137.0˚F 142.3˚F 
26 MVA 70.8˚F 114.0˚F 113.6˚F 121.8˚F 126.8˚F 

* Not including the 
starting trough, or the 
last peak and trough 
due to strain affects 

• Data compares well to known RTDs 
• Unfortunately, 76 MVA data was not captured due to 

other Control Room priorities at the time 



Data Anomalies 
Test and Results 
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• Related to patch fiber splice location 

• Patch fiber has bonded sheath, differentiating “sensor” 
from “lead” with sharp signal step 

• Splice location easily resolved in refined assembly 

 

 

• Stretch/distortion related to errant strain in fiber 

• Related to the loop-back point 

• More refinement and testing needed 

• Should be relatively easy to resolve 



Data Anomalies 
Test and Results 
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• Should be symmetrical about center?  Maybe… 

• Maximum difference ~2.7˚C (~4.9 ˚F) 

• More heat on Collector End (CE) due to circuit 
rings and main and neutral connections 

• Heavier resin coating over fibers on CE 

• Very unlikely, but could be core issue 

Collector End Resin Turbine End Resin 



Data Anomalies 
Test and Results 

Calpine Corporation 16 

• Should be the same temperature?  Maybe… 

• Maximum difference ~1.1˚C (~2.0 ˚F) 

• Different position, higher closer to core tooth 

• Different ventilation exposure 



Data Anomalies 
Test and Results 
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• Should peak/trough the same axial locations 
from leg to leg?  Maybe… 

• One iron pack + one vent = 5.1 cm (2”) 

• Average leg-leg difference =  2.8 cm (1.1”)* 

• Maximum leg-leg difference = 6.0 cm (2.4”)* 

* Not including the 
last peak and trough 
due to strain affects 



NEXT STEPS 
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• Loop-back refinement, shim-style installation, cable 
selection, routing, and frame penetrations 

• Dual-sensing RTD/FO for reference temperature? 

• Core installations during rotor-out outages 

• Core installations during stator rewinds 

• Specific region sensing 

• How do we monitor?  Periodic?  Continuous? 

• How do we set alarm points and trips? 

• How do we integrate into the existing plant control systems? 

Next Steps 
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Special Thanks 
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APPENDIX – OZ OPTICS 
Additional details on how the temperature readings are obtained using 
Brillouin scattering 
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Light scattering 
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Brillouin Scattering 

• inelastic scattering of light from acoustic 
phonons in a dielectric material.   
– Spontaneous and Stimulated Brillouin Scattering 

 
• Difference between input and scattered 

beams = “Brillouin frequency” 
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Brillouin Scattering 
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Sensing principle 

ν1 
pulse 

ν1−ν2=ν 

CW 
ν2 

νΒ 

νB changes linearly with 
the strain and 

temperature exerted. 

( ) ( )000 εενν ε −+−+= CTTCTBB

When the beat frequency 

matches  intrinsic Brillouin  

frequency of the fiber       ,         

we will get maximum of  

Brillouin spectrum. 
ν1-ν2 
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Brillouin Spectrum 

Z=0 Z=L 

Sensor medium: standard telecom optical fiber 

ν 

νΒ 
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Pulse is produced by EOM 

t 
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Input CW  

Output pulse 
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is time dependent due to the 
optical phase modulated by 
an applied voltage  

( ) 21 ϕϕϕ −=t

Mach-Zehnder modulator with two arms  

( ) 0=tϕ ( ) πϕ =t: maximum intensity output,  : minimum intensity output  

I1 ≠ I2 (AM),  
ϕ (t) cannot be exactly equal to π (PM) 
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Rx =finite ER  

Pulsed laser generated by the EOM always contains a cw (DC) component  

L.-F. Zou, et al, Opt. Lett. 30 (4), 370-372 (2005).  
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Stokes-Pump  
interaction 

Stokes DC-pump 
interaction, ϕDC+ϕpulse 

Stokes pulse-pump 
interaction, ϕpulse 

Stokes DC-pump 
interaction, ϕpulse 

Stokes DC-pump 
interaction, ϕDC 

Coherent interaction 
gives distributed 
information  

Only information along the test fiber and no spatial information  

Coherent interaction of pulse and 
pump 
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BOTDR and BOTDA 
This image cannot currently be displayed.This image cannot currently be displayed.

BOTDR: Spontaneous 
Brillouin scattering  

BOTDA: Stimulated 
Brillouin scattering  

Laser beams beat frequency    , Brillouin frequency of fiber . Bνν

Weak signal  

High dynamic range 
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